Teichmüller distance and Kobayashi distance on subspaces of the universal Teichmüller space
نویسندگان
چکیده
منابع مشابه
Quantum Teichmüller Space
We describe explicitly a noncommutative deformation of the *-algebra of functions on the Teichmüller space of Riemann surfaces with holes equivariant w.r.t. the mapping class group action.
متن کاملFuzzy Subgroups and the Teichmüller Space
There exists a generalization of the Teichmüller space of a covering group. In this paper we combine this generalized Teichmüller space T (G) and any fuzzy subgroup A : G−→ F where G is a subgroup of the group consisting of such orientation preserving and orientation reversing Möbius transformations which act in the upper half-plane of the extended complex plane. A partially ordered set F = (F ...
متن کاملOn the Tangent Space to the Universal Teichmüller Space Subhashis Nag
We find a remarkably simple relationship between the following two models of the tangent space to the Universal Teichmüller Space : (1) The real-analytic model consisting of Zygmund class vector fields on the unit circle; (2) The complex-analytic model comprising 1-parameter families of schlicht functions on the exterior of the unit disc which allow quasiconformal extension. Indeed, the Fourier...
متن کاملDual Teichmüller and Lamination Spaces
We survey explicit coordinate descriptions for two (A and X) versions of Teichmüller and lamination spaces for open 2D surfaces, and extend them to the more general setup of surfaces with distinguished collections of points on the boundary. Main features, such as mapping class group action, Poisson and symplectic structures and others, are described in these terms. The lamination spaces are int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kodai Mathematical Journal
سال: 2013
ISSN: 0386-5991
DOI: 10.2996/kmj/1372337514